与从头开始的传统学习相比,知识蒸馏有时会使DNN实现卓越的性能。本文提供了一种新的观点,可以根据信息理论来解释知识蒸馏的成功,即量化在DNN的中间层中编码的知识点。为此,我们将DNN中的信号处理视为丢弃层的信息。知识点称为输入单元,其信息比其他输入单元所丢弃的信息要少得多。因此,我们根据知识点的量化提出了三个用于知识蒸馏的假设。 1. DNN从知识蒸馏中学习比从头开始学习的DNN学习更多的知识点。 2.知识蒸馏使DNN更有可能同时学习不同的知识点。相比之下,从头开始的DNN学习倾向于顺序编码各种知识点。 3.与从头开始学习的DNN学习通常更稳定地优化了从知识蒸馏中学习的DNN学习。为了验证上述假设,我们设计了具有前景对象注释的三种类型的指标,以分析DNN的功能表示,\ textit {i.e。}知识点的数量和质量,不同知识点的学习速度,以及优化方向的稳定性。在实验中,我们诊断出各种DNN的不同分类任务,即图像分类,3D点云分类,二进制情感分类和问题回答,这些问题验证了上述假设。
translated by 谷歌翻译
计算机辅助诊断(CAD)系统可以为皮肤病的临床诊断提供参考。卷积神经网络(CNN)不仅可以提取视觉元素,例如颜色和形状,而且还可以提取语义特征。因此,他们在皮肤镜检查图像的许多任务中取得了重大改进。皮肤镜检查的成像没有主要方向,表明数据集中有大量的皮肤病变靶旋转。然而,CNN缺乏抗旋转能力,这必然会影响CNN的特征提取能力。我们提出了一个旋转平均值(RM)网络,以从皮肤镜图像中提取旋转不变性特征。在RM中,每组旋转的特征地图对应于一组重量共享卷积输出,并使用MeanOut操作融合以获取最终特征图。通过理论推导,提出的RM网络是旋转等值的,并且在全球平均池(GAP)操作之后,可以提取旋转不变的特征。提取的旋转不变特征可以更好地代表皮肤镜图像的分类和检索任务中的原始数据。提出的RM是一般操作,它不会改变网络结构或增加任何参数,并且可以灵活地嵌入CNN的任何部分。大量实验是在皮肤镜检查图像数据集上进行的。结果表明,我们的方法优于其他抗旋转方法,并在皮肤镜检查图像分类和检索任务方面取得了重大改进,表明在皮肤镜图像领域旋转不变性的潜力。
translated by 谷歌翻译
当系统中有某些未知术语和隐藏的物理机制时,基于第一原理的复杂物理系统的管理方程可能会非常具有挑战性。在这项工作中,我们采用深度学习体系结构来学习基于从完全动力学模型中获取的数据的等离子体系统的流体部分微分方程(PDE)。证明了学到的多臂流体PDE可以融合诸如Landau阻尼等动力学效应。基于学习的流体闭合,数据驱动的多音阶流体建模可以很好地再现从完全动力学模型中得出的所有物理量。Landau阻尼的计算阻尼率与完全动力学的模拟和线性理论一致。用于复杂物理系统的PDE的数据驱动的流体建模可以应用于改善流体闭合并降低全球系统多规模建模的计算成本。
translated by 谷歌翻译
最近的研究表明,通过梯度下降训练的无限宽神经网络(NN)的动态可以是神经切线核(NTK)\ CITEP {Jacot2018neural}的特征。在平方损失下,通过梯度下降训练的无限宽度NN,具有无限小的学习速率等同于与NTK \ CITEP {arora2019Exact}的内核回归。但是,当前ridge回归{arora2019Harnessing}只知道等价物,而NN和其他内核机(KMS)之间的等价,例如,支持向量机(SVM),仍然未知。因此,在这项工作中,我们建议在NN和SVM之间建立等效,具体而言,通过柔软的边缘损失和具有由子润发性培训的NTK培训的标准柔软裕度SVM培训的无限宽NN。我们的主要理论结果包括建立NN和广泛的$ \ ELL_2 $正规化KMS之间的等价,其中有限宽度界限,不能通过事先工作来处理,并显示出通过这种正规化损耗函数训练的每个有限宽度NN大约一公里。此外,我们展示了我们的理论可以实现三种实际应用,包括(i)\ yressit {非空心}通过相应的km界限Nn; (ii)无限宽度NN的\ yryit {非琐碎}鲁棒性证书(而现有的鲁棒性验证方法提供空中界定); (iii)本质上更强大的无限宽度NN,来自以前的内核回归。我们的实验代码可用于\ URL {https://github.com/leslie-ch/equiv-nn-svm}。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译